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Statistical 

In this paper, we investigate the connection between crystallographic groups and 
homogeneous statistical solutions of Navier-Stokes equations. Several results of 
Foias and Temam are extended. Fluid flows invariant under crystallographic 
groups are studied. This idea may be of interest to the understanding of 
bifurcation and turbulence. 
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1. INTRODUCTION 

In the mathematical theory of turbulent flows, statistical solutions to the 
Navier-Stokes equations 

Ou vAu + (u . 7 )u  + Vp = O 
~t 

V ' u = O  

are a family { ~t) of measures on a suitable function space H such that if 
the initial data satisfy 

/ ~ 0 ( A ) = P r o b ( u o ~ A ) ,  for each Borel set A C H  

then 

I~t(A) -- Probfu( t )  E A ) (t > 0) 

and satisfy some conditions. 
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This project has been carried out by Foias, (a'3~ Foias and Temam, (4~ 
Hopf, (6~ and Vishik and Foursikov (9'1~ and others (see above-mentioned 
papers for further references). In particular, Foias and Temam (4~ and 
Vishik and Fouriskov, (9'~~ have investigated the homogeneous turbulence 
or homogeneous statistical solutions to the Navier-Stokes equations. The 
equations studied by Vishik and Foursikov are modified Navier-Stokes 
equations with some perturbed terms. 

Lloc(R ) is homogeneous A measure/x on a suitable function space in 2 3 3 
if/z is invariant under all the induced actions of translations of R 3. In Ref. 
4, Foias and Temam have proved the important result that homogeneous 
statistical solutions or homogeneous measures satisfying certain conditions 
exist for the given initial homogeneous measure of the Navier-Stokes 
equations (Theorem 4.1, p. 27 of Ref. 4). The idea of the proof is that any 
homogeneous statistical solution is a limit in some weak sense of homoge- 
neous statistical solutions concentrated on flows periodic in the space 
variables. The existence of homogeneous statistical solutions for periodic 
flows can be proved using function spaces on cubes which are compact. 

In this paper, we shall extend the definition of homogeneous measure 
and of the definition of homogeneous statistical solution of Foias and 
Temam (or Vishik and Foursikov) to the full group E(3) of motions of the 
Euclidean 3-space R 3 and extend the periodicity to invariance with respect 
to a discrete subgroup of E(3) with compact fundamental domain (or a 
crystallographic subgroup). We are able to extend the result of Foias and 
Temam on periodic flows to this setting which seems to be natural under 
physical and experimental consideration. The relation of crystallographic 
subgroups of E(n) with stability and bifurcation of fluid dynamics is 
described in Ref. 7. 

This paper is organized as follows. In Section 2, we present basic 
concepts about Euclidean motion group, discrete subgroups, fundamental 
domains, Bieberbach's celebrated structure theorem, and classification of 
crystallographic groups. This section is not so well known to experts in fluid 
mechanics. We define, in Section 3, homogeneous measure and introduce 
some familiar function spaces. In Section 4, periodic flows are extended to 
flows invariant under crystallographic groups. 

We follow closely the arguments of Foias and Temam. (4~ Our main 
idea is to use a bigger group E(3) instead of the translations. The full group 
of motions is the semidirect product SO(3)- R 3, where SO(3) denotes the 
rotation group and N 3 denotes the translation group. According to Bieber- 
bach, (11~ every crystallographic group has a normal subgroup of finite 
index in the translation group [~3 and any minimal set of generators of the 
normal subgroup is a vector space basis of R 3 relative to which the SO(3) 
components of the elements of the crystallographic group have all entries 
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integral. There are only finitely many isomorphism classes of crystallo- 
graphic groups on R 3. 

We mention several situations where our arguments can be extended. 
Let us consider a bounded domain D which has a smaller group of motions 
than E(3). In many cases, the group of motions may be only the identity. 
The half-space R 2 • R + has a quite large group which includes E(2) as a 
proper subgroup. The cylinder has also a nontrivial group of motions. We 
can consider discrete subgroups of the group of motions and carry out the 
same arguments. 

2. THE EUCLIDEAN MOTION GROUP AND 
CRYSTALLOGRAPHIC SUBGROUPS 

Let R n be the n-dimensional Euclidean space with the usual metric. By 
a motion of R n, we mean a nonhomogeneous linear transformation g which 
preserves both the distance between points of R n and its orientation. It is 
known that any motion g in R n can be written in the form 

x--~Ax + a 

where A is a rotation in R n [that is, some element of the group SO(n)], and 
a is a vector of R n. We shall write 

g = (A, a) 

The group operation is defined by 

In particular, 

(A1 ,al)(A2 ,a2) = (A1A 2 ,Ala2 + al) 

(A ,a )  = ( I ,a) (  A, O) = (A, O)( I ,A  - la) 

where I denotes the identity rotation. 
It is easy to verify that an invariant measure in the n-dimensional 

Euclidean motion group E(n)  is given by dg = dA .  da, where dA is the 
normalized invariant measure in SO(n)  and da is the Euclidean measure in 
R n" 

Let G be a Hausdorff topological group. A discrete subgroup is a 
subgroup which is a discrete subset. If H is a closed subgroup of G, then 
the coset space G / H  has the quotient topology for the projection G 
--~ G / H .  

A group r of homeomorphisms acting on a connected locally arcwise 
connected space X is discontinuous at a point x if given any sequence 
{Yi} c r of distinct elements, the sequence (y;(x))  E X has no accumula- 
tion point. F is discontinuous on X if it is discontinuous at every point x of 
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X. F is properly discontinuous on X if every point x in X has a neighbor- 
hood U such that (3' c F : y (U)  meets U) is finite. 

ProposlUon 2.1. Let F and K be subgroups of G with K compact 
and G locally compact. The following are equivalent: (1) F is discontinuous 
at some point of G/K, (2) F is discontinuous on G/K, (3) F is properly 
discontinuous on G/K, (4) F is discrete in G. 

Proof. See p. 99 of Ref. 11. 

Now, we apply the above general facts to the case G = E(n), K 
= SO(n) and F is a discrete subgroup of E(n). 

R n can be identified with E(n)/SO(n). Thus, we have that a subgroup 
F of E(n) acts properly discontinuously on R n if and only if F is discrete in 
E(n). A closed subgroup H of G is uniform if G/H is compact. Then F is a 
uniform discrete subgroup of E(n) if and only if F acts properly discontinu- 
ously with compact quotient on R n. A discrete uniform subgroup of E(n) is 
called a crystallographic group on R ~. This name came from the study of 
crystalline structures on R n. 

The following theorem of Bieberbach is fundamental. 

T h e o r e m  2.2 (Bieberbach). If F N E(n) is a crystallographic group, 
then F A R n is a normal subgroup of finite index in F, and any minimal set 
of generators of F A R n is a vector space basis of R ~ relative to which the 
SO(n) components of the elements of F have all entries integral. For  each 
integer n > 0, there are only a finite number of isomorphism classes of 
crystallographic groups on R ~. 

The Euclidean space form problem is the classification of all discrete 
groups of motions which are fixed point free. This problem has only been 
completed recently by Wolf (11) and others (see Ref. 11 for references). For  
R 2, the problem is quite easy, namely, the Euclidean 2-space forms are the 
Euclidean plane, the cylinders, and the tori. If we allow nonorientation 
preserving motions such as in Ref. 11, we have, in addition, the Moebius 
bands and the Klein bottles. The case of three-dimensional Euclidean space 
forms are much more difficult. The noncompact  case is given by Wolf 
(Theorem 3.5.1 of Ref. 11). We shall state the case of compact orientable 
Euclidean 3-space forms, because it is related to the study of the Navier -  
Stokes equations. 

Theorem 2.3 (Hantzsche and Wendt(ll)). There are just six affine 
diffeomorphism classes of compact connected orientable Euclidean 3-space 
forms. The group F is one of the following six groups. Here (al,a2,a3) is a 
translation lattice and t i = t,, is the corresponding translation. 

(1) F is generated by the translations (tl,tE, t3) with (ai) linearly 
independent. 
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(2) F is generated by  {ot, t l , t 2 , t3} ,  where a 2 =  tl, at2a - I  = tS  I, and  
o~t30~ - l =  t 3 1 ;  a 1 is or thogonal  to a 2 and  a3, while a = ( A , a l / 2  ) with 

A (al) = al ,  A (a2) = - a 2, A (a3) = - a 3. 
(3) F is generated by  {a,  t l , t2 ,  t3}, where a 3 =  t 1, at2a - 1 =  t 3 and  

at30t -1 = t Z l t 3 1 ;  a 1 is or thogonal  to a 2 and  a3, Ila211 = Ila311, and  (a2,a3} is 
a hexagonal  plane lattice, and  a = ( A , a l / 3 )  with A ( a ] ) =  a 1, A ( a e ) =  a 3 

and  A (a3) = - a 2 - a 3. 
(4) F is generated by {a ,  t l , t z ,  t3}, where a 4 =  tl, at2a -1 = t3, and  

oLt3ot - l =  t2-1; (ai}  are mutual ly  or thogonal  with Ila211 = I la3fl ,  while a 
= (A ,  a l / 4  ) with A (al) = al ,  A (a2) = a 3 and  A (a3) = - a 2. 

(5) F is generated by  {a ,  t l , t z ,  t3}, where a 6 =  tl, ott2ct -1 = t3, and  
at3a -1 = t21t3; a I is or thogonal  to a 2 and  a3, Ila211 = Ila3ll ,  and  (az,a3} is a 
hexagonal  plane lattice, and a = (A ,  a ] / 6  ) with A (a 0 = a 1 , A (a2) = a3, and  

A ( a 3 ) =  a 3 -  a 2. 
(6) r is generated by  (a ,  f l , 7 ; t l ,  t2,t3},  where yf la  = t i t  3 and  

0~2 -.~ t l ,  Ott20t - l = t 2  1 ataa - 1 = t f  1 

f l t l f l - l  = t l  1, f12= t2 ' f l t 3 f l - t =  t31 

ytlT -1 = t l  1, 7t27 -1 = t2-1T2= t 3 

The {ai) are mutual ly  or thogonal  and  a = ( A , a l / 2 ) ,  f l  = [ B , ( a  2 + a3)/2],  

and  7 = [ C , ( a l  + a 2 +  a3)/2],  with A ( a l )  = a l, A(a2)  = - a  2, A(a3)  = 
- a 3 ;  B ( a ] ) = - a  1, B ( a 2 ) = a  2, B ( a 3 ) = - a 3 ;  C ( a l ) = - a  1, C ( a 2 ) =  
- a2, C(a3) = a 3. 

Let  X be a topological space on which a discrete group F of homeo-  
morphisms acts. We  int roduce the concept  of a fundamenta l  domain  in X 
relative to F. A fundamenta l  domain  in X relative to F is defined as an  
open  set F c X satisfying the following two condit ions:  

1. For  arbitrary )t 1 --/= "/2 the sets , f lF and  72ff, where ff  is the closure 
of F, have no c o m m o n  elements. 

2. The union  of the sets ,/if, where ~ ranges over F, is the whole 
space X. 

Basically, every point  x of X can be represented in the form 7x ,  where 
7 in F and  x ~ ft. This representat ion is unique for almost  all points in X. 
The nonuniqueness  m a y  only occur  at F ( f f \ F ) .  A fundamenta l  domain  
relative to a discrete group F is not  uniquely determined by  the group F, in 
fact, ff F is a fundamenta l  domain  then every translation 7 F  of it, 7 E F, is 
also a fundamenta l  domain.  

There is a well-known me thod  of construct ing a fundamenta l  domain  
for a locally compac t  metric space X satisfying the following: for any  two 
points x 1 and  x 2 one can f ind a third pon t  x3 such that  d ( x l ,  x3) = d ( x  3, x2) 
= ( 1 / 2 ) d ( x l , x 2 ) .  For  Eucl idean space N n, this condi t ion is satisfied. We  
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assume that the group F preserves the metric d or they are isometrics. We 
select a point x 0 that is not a fixed point. We consider the set F of those 
points x such that d ( x  o, x)  < d ( yx  o, x)  for every y ~ e in F. 

It is not difficult to prove that the above defined F is a fundamental 
domain relative to F. There is much interest in discrete groups for which 
the closure ff of a fundamental domain F is a compact set. In our case of 
interest, ff being compact is equivalent to ff being a closed and bounded 
set. One can prove that under the compactness assumption there are 
finitely many o I . . . .  , o m of F such that ff can be given by finitely many 
inequalities 

d ( x o , x  ) <<. d(oiXo,X),  i =  1 . . . . .  m 

In other words, F is finitely generated and has finitely many relations 
among the generators. 

An example of the above discussion is that F is a discrete subgroup of 
a locally compact group G such that F\  G is compact. Then there exists a 
fundamental domain F in G relative to F and the closure ff of F is 
compact. In this special case, we shall write C instead of F and write 
G = I ' .  C. We shall apply this notation for the Euclidean motion group 
and its crystallographic subgroups. 

3, FUNCTION SPACES AND HOMOGENEOUS MEASURES 

Le t  L2(R n) denote the space of square integrable real functions on R" 
and Hm(R n) denote the Sobolev space of functions in L2(R n) together with 
their derivatives of order < m. The space 2 , m n Lloc(R ) [respectively, Hloc(R )] is 
the space of functions which are locally L 2 (respectively, H m) on  R n. 
L2(Rn) = L2(Rn)n, L2oc(R~) = L 2 t[~n~n m n l o c k  3 ,  Hm(Rn) = Hrn(Rn) n, Hloc(R ) 

=/-/l~'c(R")". 

and 

If Q is a bounded measurable subset of R n and u is in L21ockrRn~J, then 

Ilulle= ~ j= l -~xj  (x) aN 

( 1 )  l j2 1 ~ ID~u(x) l  2 dx  , lul"'Q = ~ I,~1< m 

where I QI = measure of Q. 



Crystallographic Groups and Homogeneous Statistical Solutions 585 

Let 

2 , �9 = 0 }  Hlo r  { u ~ L ] o c ( R ) , V  u 

= H 1 ~R n~ V - u = 0 }  

be the Frechet spaces endowed with the above seminorms. 
For each g in E(n), we denote by rg the operator defined on all 

function spaces on R ~ by 

= u ( g x )  

If F is a crystallographic subgroup of E(n) and F(F) is a fundamental 
domain relative to F in R', then 

H(r )  = {u E H l o c , r r u  = u, all T E 1 p) 

V(F) = {u C Vlo~,rru = u, all y C F} 

These spaces are Hilbert spaces for the norms {UlF(r ) and {U[),F(r ) . 
We consider probability measures on Hlo c, that is, Borel measures on 

Hio r which are positive and of mass 1. Let g be in E(n) and let rg be the 
operator which is linear and continuous on Hlo ~ to itself. If /z is a 
probability measure on Hlo ~, then the image measure rg(#) is well defined 
and is also a probability measure on Hlo ~. This is just the induced action on 
the space of all probability measures on Hlo ~. We still use the same notation 
rg for the induced action. 

Definition 3.1. A probability measure t, on Hlo c is homogeneous if 
rg(l~ ) =/* for every g in E(n). 

Thus, every translation-invariant measure (4'9) is not homogeneous in 
our sense and our homogeneity includes rotational invariance also. 

A measure # being homogeneous is equivalent to that for every 
function ~ ~ B(Hlo~), the space of real bounded continuous functions on 
Hlo ~, we have 

for every g in E(n). 
The two lemmas of Ref. 4 on homogeneous measure are valid. 

Lemma 3.1. Let/ ,  be a homogeneous measure on H~o c and let G be a 
mapping defined d/, a.e. from H]o c into 1 n Lloc(~ ) such that the mapping 
u ~ feG(u)(x)dx is d/, measurable for all compact subsets. We assume that 
G commutes with the E(n) actions: G o zg = rg o G, for all g in E(n), and 
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for some compact  subset Q0, 

f foolG(u)(x)laxd,(u)_ < + oo 
Then for every ~ ~ LI(R) ,  the integral 

f fG(u)(x),(x)exe.(.) 
makes sense and equals (G)f(~ dx, where ( G )  is a constant independent of 
~, which is denoted by 

f G(u)(x) dl~ (x) for every x in R n 

If G(u)(x)= A(D)F(u)(x), where A(D) is a differential operator with no 
zero-order term and F maps Hlo c into l Lloo(N ) and satisfies the same 
conditions as G, then 

f a(u)(x)d~(u) = 0 

Lemma 3.2. Under  the same assumptions as the previous lemma, 
and if Q is a bounded measurable set in E", the value of the integral 

1 

is independent of Q. 

Let H be a Hilbert space. The real function ~ defined on H by 

q)(u) = e-l/2(s,,u),, 

where S is a linear continuous operator on H,  is the characteristic function 
of a Gaussian probability measure if and only if 

S > 0  and T r S <  +o0 

We define a Gaussian probability measure on H = H(F)  this way. 
Let F be a crystallographic group with E(n)= F. C, where C is a 

compact  fundamental  domain relative to F in E(n). Then we have the 
following. 

If/~ is a probabili ty measure on Hloc, concentrated on L e m m a  3.3. 
H(F), then 

1 fc A )dg g -- T-dT 
where [C[ denotes the Haar  measure of C in E(n), is a homogeneous 
probability measure concentrated on H(F).  
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We can follow the argument of Ref. 4 to prove this lemma or apply the 
fixed-point property of amenable groups acting on compact convex subsets 
in locally convex topological vector spaces. The Euclidean group is known 
to be amenable. The space of probability measures on//1o c is compact and 
convex in a locally convex topological vector space. The fixed point will be 
the homogeneous measure that we are looking for. 

Proof. We have to show that/~ is homogeneous. If ~ E B(Htoc) and 
g E E(n), we need 

1 
f = f -v f2 

But O(rgu), for u E H(F),  is F invariant. Thus for d/~ a.e. 

by the 1" invariance of O and g C =  UT= l (vi C N gC) for some Vi, 
1 < i < N and 

for every g in E(n). �9 

4. STATISTICAL SOLUTIONS OF NAVIER-STOKES EQUATIONS 

The problem is to find a vector function u = (u I . . . .  , u,) and a scalar 
function p defined on R n x (0, T) ( T  > 0 is arbitrarily large) such that 

~u 

~t 
- - - v h u + ( u . V ) u + V p = f  in a ~X(O,T) 

V u = 0  in R" X (0, T)  

rvu = u, 2/~ F 

u(x,  O) = Uo(X), u o given in H (F )  

(4.1) 

where v > 0, F is given, f is the given body force and f E L2(0, T; H(F)). 
If n = 2, for u 0 and f given in H(I ' )  and L2(0, T; H(F)), there exists a 

unique solution u in L2(0, T; V(F)) n C([0, T]; H(F)). If n = 3, we know the 
existence of a solution u in L2(0, T; V(F)) A C([0, T]; H(F)w), where H(F)w 
denotes H(F)  with the weak topology. 

Definition 4.1. A statistical solution of (4.1) is a family of measures 
(/~t, 0 < t < T)  on H(F)  which satisfies the following conditions: 
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(1) 
able: 

(2) 

(3) 

For every ~ E B(H(F)), the mapping t--> f@(u)d#t (u) is measur- 

flul=~(r) d~, (u) e L~(0, T), fllut@(r)d~, (u) e L'(0, T) 

f ,~(u) a~, (u) + IF(r)l 

--I ~(r)l fo'f[i(=), ,'(.)]~<.)d,, (u)d= + f ,(.)d,o (.) 
for t E [0, T], ~ E Po- 

t 2 

(4) f 2.s f 

for t �9 [0, T]. 
Here Po is the family of functions q~(u)= ~[(u, g 0 ~ r )  . . . . .  (u, 

gk)F(r)l, where tp is C i on R k with compact support and gi . . . . .  g~ E V(F). 
< ' ,  ")r(r) is the pairing between V(F) and V'(F) and B(u)---B(u,u), 
where B(u, v) is the operator from V(F) x V(I') into V'(F) defined by 

<~(u,v),~>- I fF(r)[U. V)v]wdx IF(r)I 

for u, v, w E V(F). ~' is the differential of @ in H(F). 
The main theorem in this section is the following: 

Theorem 4.1. G i v e n f  ancl it0, f ~ L2(0, T; H(F)), and / t  o a probabil- 
ity measure on H(F), T > 0 arbitrarily large, there exists a family of 
measures ( #,} 0 < t < T which satisfies the conditions of the definiEon of 
statistical solutions in Definition 4.1. Furthermore if f =  0 and tt 0 is a 
homogeneous probability measure concentrated on H(F) then there exists a 
family (ttt} 0 < t < T such that tt, is concentrated on H(F) and is homoge- 
neous for every t. 

The proof of this theorem needs some changes but essentially is the 
same as Ref. 4. The first step is the Galerkin method. The procedure is the 
same by replacing the cube Q(L) of Ref. 4 by the compact fundamental 
domain F(F). By the local solvability, we get a sequence/t} m) of probability 
measures. The second step is the passage to the limit as m approaches 
infinity. This is the same as Ref, 4, The third step is the homogeneity. We 
are given tt~e homogeneity of ~o, however, we have to prove the Izomogene- 
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ity of/1 t , For every t > 0 we define 

g' = i-di .g( , . )dg.  0 < t < r  

By Lemma 3.2, /7 t is a homogeneous probability measure concentrated on 
H( I ' )  and/~0 =/~0. The conditions in Definition 4.1 are satisfied, by using 
the relations 

Ilull -(r) = IITgull (r) 
[for u E V(F) and g E E(n)] 

, i ( u )  = o 

(B = 
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